Short unligated sticky ends enable the observation of circularised DNA by atomic force and electron microscopies.
نویسندگان
چکیده
A comparative study of the stabilisation of DNA sticky ends by divalent cations was carried out by atomic force microscopy (AFM), electron microscopy and agarose gel electrophoresis. At room temperature, molecules bearing such extremities are immediately oligomerised or circularised by addition of Mg2+or Ca2+. This phenomenon, more clearly detected by AFM, requires the presence of uranyl salt, which stabilises the structures induced by Mg2+or Ca2+. DNA fragments were obtained by restriction enzymes producing sticky ends of 2 or 4 nucleotides (nt) in length with different guanine plus cytosine (GC) contents. The stability of the pairing is high when ends of 4 nt display a 100% GC-content. In that case, 95% of DNA fragments are maintained circular by the divalent cations, although 2 nt GC-sticky ends are sufficient for a stable pairing. DNA fragments with one blunt end and the other sticky appear as dimers in the presence of Mg2+. Dimerisation was analysed by varying the lengths and concentrations of DNA fragments, the base composition of the sticky ends, and also the temperature. Our observation provides a new powerful tool for construction of inverted dimers, and circularisation, ligation analysis or short bases sequence interaction studies.
منابع مشابه
Analysis of various sequence-specific triplexes by electron and atomic force microscopies.
Sequence-specific interactions of 20-mer G,A-containing triple helix-forming oligonucleotides (TFOs) and bis-PNAs (peptide nucleic acids) with double-stranded DNA was visualized by electron (EM) and atomic force (AFM) microscopies. Triplexes formed by biotinylated TFOs are easily detected by both EM and AFM in which streptavidin is a marker. AFM images of the unlabeled triplex within a long pla...
متن کاملProgrammable Assembly at the Molecular Scale: Self-Assembly of DNA Lattices (Invited Paper)
DNA self-assembly is a methodology for the construction of molecular scale structures. In this method, arti cially synthesized single stranded DNA self-assemble into DNA crossover molecules (tiles). These DNA tiles have sticky ends that preferentially match the sticky ends of certain other DNA tiles, facilitating the further assembly into tiling lattices. DNA self-assembly can, using only a sma...
متن کاملStructure and DNA-binding properties of the Bacillus subtilis SpoIIIE DNA translocase revealed by single-molecule and electron microscopies
SpoIIIE/FtsK are a family of ring-shaped, membrane-anchored, ATP-fuelled motors required to segregate DNA across bacterial membranes. This process is directional and requires that SpoIIIE/FtsK recognize highly skewed octameric sequences (SRS/KOPS for SpoIIIE/FtsK) distributed along the chromosome. Two models have been proposed to explain the mechanism by which SpoIIIE/FtsK interact with DNA. Th...
متن کاملStepwise self-assembly of DNA tile lattices using dsDNA bridges.
The simple helical motif of double-strand DNA (dsDNA) has typically been judged to be uninteresting for assembly in DNA-based nanotechnology applications. In this letter, we demonstrate construction of superstructures consisting of heterogeneous DNA motifs using dsDNA in conjunction with more complex, cross-tile building blocks. Incorporation of dsDNA bridges in stepwise assembly processes can ...
متن کاملStrength of DNA sticky end links.
Sticky ends are unpaired nucleotides at the ends of DNA molecules that can associate to link DNA segments. Self-assembly of DNA molecules via sticky ends is currently used to grow DNA structures with desired architectures. The sticky end links are the weakest parts of such structures. In this work, the strength of sticky end links is studied by computational means. The number of basepairs in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 26 9 شماره
صفحات -
تاریخ انتشار 1998